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SUMMARY

The goal of the DESPIC project was to develop a technological infrastructure to automatically detect orchestrated campaigns in
their early stage of diffusion. The list of such campaigns includes rumors, spread of misinformation, persuasion attempts, and
advertising. During the performance period we advanced in a number of directions relevant to the stated goal. These include
the design and implementation of a high performance infrastructure for data collection, filtering and analysis, and the design and
development of the technical and algorithmic framework for detection of (simple) campaigns-the details are outlined below.

Our work lead to a number of prestigious publications appeared in top journals in physics and computer science, including



Physical Review Letters, Communications of the ACM, IEEE Computer, PLoS One, and major computer science conferences
such as ACM WWW, ACM SIGIR, ACM Web Science, ACM/IEEE ASONAM, and ICWSM, to mention a few.

Our team has received recognition in various forms: the Indiana team became part of the Web Observatory, a group of 8
international teams that includes Oxford, Rensselaer Polytechnic Institute, Southampton University, and KAIST, whose goal is
to design frameworks for real-time analysis of activity on social media. We also freely delivered a proof-of-concept of our social
bot detection system, called ‘Bot or Not?’ that allows to automatically classify any Twitter account as human- or bot-like. Our
work has attracted attention and been reported about in technology magazines. The list includes the MIT Technology Review,
Scientific American, Wired, the Smithsonian Magazine, Vice and Mashable, and in news media outlet like the New York Times,
the Washington Post, the Guardian, Politico and the BBC. The initial version of the ReQ-ReC framework discussed below was
used to participate in the microblog track of the TREC 2013 and achieved the top rankings among more than 70 submissions
from 20 participating teams [16]. A case study on user roles in online discussion and how they change over time [6] received
the best paper award at the ACM Websci 2014 conference.

Below a short summary of the main results achieved:

1. The IU Team designed and implemented a distributed infrastructure for Twitter data collection, archival and retrieval. After
testing different distributed NoSQL databases including HBase and Riak, we finalized the requirements of the optimal
computational architecture to support our framework. We also concluded the development of an API to allow general public to
access our datasets in aggregated form. Details about this task are in Sec. 5.1 and published in Cloud Computing for Data
Intensive Applications and presented in two prestigious HPC conferences.

2. The IU Team completed the implementation and performance evaluation of an algorithm for tweet clustering in a streaming
scenario. The results, despite the limited ground-truth data used for validation, are extremely satisfactory. The system proved
able to outperform various baseline methods and state-of-the-art algorithms developed by other groups. Our strategy
compensates the paucity of text in Twitter messages by leveraging network, diffusion, and user meta-data to assess tweet
similarity. Performance evaluation determined that our framework is able to successfully retrieve trending topics. Further testing
will be required to establish whether the topical clustering works also with other conversations of general interest. This research
line is discussed in details in Sec. 5.2 and in revision on Social Network Analysis and Mining.

3. To understand the diffusion of misinformation and campaigns on a more theoretical ground, the IU Team investigated how
social reinforcement and the modular structure of the social network affect information diffusion. Our findings show that there
exists an optimal modular structure that simultaneously enhances local diffusion and global spreading. Our work has been
published on the prestigious Physical Review Letters and it was selected as the issue Editor’s Pick. See Sec. 5.3.

4. One of the main goals of our project is to understand user behavior on social media platforms. IlU Team performed different
several case studies, focused on: (i) the geographical and temporal dynamics of the Occupy Wall Street protest. Results are
published in two highly-cited papers both in PLoS One. (ii) The Gezi Parki protest, a social upheaval unfolded in Turkey in 2013.
The studied examined how user influence and user roles change over time. Our findings, discussed in Sec. 5.4, have been
presented at the prestigious ACM Web Science 2014 Conference and the paper received the Conference Best Paper Award.
(iii) The evolution of the social network supported by the Yahoo! Meme platform. The goal of the study was to understand the
feedback influence loop between information diffusion and the creation of new social links. Our results have been presented at
the prestigious ACM KDD 2013 Conference.

5. Social bots are tools increasingly adopted to sustain promotion and persuasion campaigns. IU Team developed a machine-
learning framework for the classification of Twitter accounts that discriminates between humans and social bots. Such system
was one of the tools we used to approach the DARPA Bot Detection Challenge. Our framework achieves a classification
performance above 95% as measured by ROC AUC. The system has been implemented as a open-access platform called ‘Bot
or Not?’ (truthy.indiana.edu/botornot) and has received coverage by several major international news outlets. Our results are
described in details in Sec. 5.5 and are appearing under the prestigious Communications of ACM. The performance at the
DARPA Challenge will appear on IEEE Computer.

6. Coordinated efforts to promote content in a less than transparent fashion goes often hand-in-hand with the spread of
unreliable information. |U studied the possibility to check the validity of simple statements in an automatic fashion. Our
framework infers their plausibility of such statements on the basis of the proximity (in a given knowledge graph) of the entities it
involves. We found that the complexities of human fact-checking can be approximately resolved by finding the shortest path
between concept nodes under properly defined semantic proximity metrics on knowledge graphs. Framed as a network
problem, our approach is feasible with efficient computational techniques. We evaluated this approach by examining thousands
of claims related to history, entertainment, geography, and biographical information using a public knowledge graph extracted
from Wikipedia. Statements independently known to be true consistently receive higher support via our method than do false
ones. See Sec. 5.6.

7. The LM ATL Team, in collaboration with the 1U team focused on: (a) Exploration of performance of ATL-developed SAX-
VVSM technology and its ability to detect promoted topics before their trending phase on Twitter; (b) Improving detection



performance of the method by optimizing the feature selection process; (¢) Developing and implementing a general approach to
detect any type of pattern associated with anomalous information diffusion on Twitter. These include patterns associated to
coordinated effort of promotion and persuasion, as well as grass root conversations. See Sec. 5.7.

8. The UM Team developed a real-time algorithm that is able to detect emerging rumors from the stream of social media at a
high precision and hours earlier than existing methods. We developed a user-in-the-loop retrieval system that aim to find all
posts related to a given rumor, which yielded a 20% to 30% improvement over the state-of-the-art and won the microblog track
of the annual TREC competition. We explored the prediction of the burstiness and popularity of hashtags at various stages of
their life cycle. We identified and tested the effectiveness of seven types of features. See Sec. 5.8.
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1. Foreword and Extended Summary: Goals, Methods and Results

The goal of the DESPIC project was to develop a technological infrastructure to
automatically detect orchestrated campaigns in their early stage of diffusion. The list of
such campaigns includes rumors, spread of misinformation, persuasion attempts, and
advertising. During the performance period we advanced in a number of directions
relevant to the stated goal. These include the design and implementation of a high
performance infrastructure for data collection, filtering and analysis, and the design and
development of the technical and algorithmic framework for detection of (simple)
campaigns-the details are outlined below.

Our work lead to a number of prestigious publications appeared in top journals in
physics and computer science, including Physical Review Letters, Communications of
the ACM, IEEE Computer, PLoS One, and major computer science conferences such as
ACM WWW, ACM SIGIR, ACM Web Science, ACM/IEEE ASONAM, and ICWSM, to
mention a few.

Our team has received recognition in various forms: the Indiana team became part of
the Web Observatory, a group of 8 international teams that includes Oxford, Rensselaer
Polytechnic Institute, Southampton University, and KAIST, whose goal is to design
frameworks for real-time analysis of activity on social media. We also freely delivered a
proof-of-concept of our social bot detection system, called ‘Bot or Not?’' that allows to
automatically classify any Twitter account as human- or bot-like. Our work has
attracted attention and been reported about in technology magazines. The list includes
the MIT Technology Review, Scientific American, Wired, the Smithsonian Magazine,
Vice and Mashable, and in news media outlet like the New York Times, the Washington
Post, the Guardian, Politico and the BBC. The initial version of the ReQ-ReC framework
discussed below was used to participate in the microblog track of the TREC 2013 and
achieved the top rankings among more than 70 submissions from 20 participating
teams [16]. A case study on user roles in online discussion and how they change over
time [6] received the best paper award at the ACM Websci 2014 conference.

Below a short summary of the main results achieved:

1. The IU Team designed and implemented a distributed infrastructure for Twitter
data collection, archival and retrieval. After testing different distributed NoSQL
databases including HBase and Riak, we finalized the requirements of the optimal



computational architecture to support our framework. We also concluded the
development of an API to allow general public to access our datasets in aggregated
form. Details about this task are in Sec. 5.1 and published in Cloud Computing for Data
Intensive Applications and presented in two prestigious HPC conferences.

2. The IU Team completed the implementation and performance evaluation of an
algorithm for tweet clustering in a streaming scenario. The results, despite the limited
ground-truth data used for validation, are extremely satisfactory. The system proved
able to outperform various baseline methods and state-of-the-art algorithms developed
by other groups. Our strategy compensates the paucity of text in Twitter messages by
leveraging network, diffusion, and user meta-data to assess tweet similarity.
Performance evaluation determined that our framework is able to successfully retrieve
trending topics. Further testing will be required to establish whether the topical
clustering works also with other conversations of general interest. This research line is
discussed in details in Sec. 5.2 and in revision on Social Network Analysis and Mining.

3. To understand the diffusion of misinformation and campaigns on a more
theoretical ground, the IU Team investigated how social reinforcement and the modular
structure of the social network affect information diffusion. Our findings show that
there exists an optimal modular structure that simultaneously enhances local diffusion
and global spreading. Our work has been published on the prestigious Physical Review
Letters and it was selected as the issue Editor’s Pick. See Sec. 5.3.

4. One of the main goals of our project is to understand user behavior on social media
platforms. IU Team performed different several case studies, focused on: (i) the
geographical and temporal dynamics of the Occupy Wall Street protest. Results are
published in two highly-cited papers both in PLoS One. (ii) The Gezi Parki protest, a
social upheaval unfolded in Turkey in 2013. The studied examined how user influence
and user roles change over time. Our findings, discussed in Sec. 5.4, have been
presented at the prestigious ACM Web Science 2014 Conference and the paper received
the Conference Best Paper Award. (iii) The evolution of the social network supported by
the Yahoo! Meme platform. The goal of the study was to understand the feedback
influence loop between information diffusion and the creation of new social links. Our
results have been presented at the prestigious ACM KDD 2013 Conference.

5. Social bots are tools increasingly adopted to sustain promotion and persuasion
campaigns. IU Team developed a machine-learning framework for the classification of
Twitter accounts that discriminates between humans and social bots. Such system was
one of the tools we used to approach the DARPA Bot Detection Challenge. Our
framework achieves a classification performance above 95% as measured by ROC AUC.
The system has been implemented as a open-access platform called ‘Bot or Not?”
(truthy.indiana.edu/botornot) and has received coverage by several major
international news outlets. Our results are described in details in Sec. 5.5 and are
appearing under the prestigious Communications of ACM. The performance at the
DARPA Challenge will appear on IEEE Computer.



6. Coordinated efforts to promote content in a less than transparent fashion goes
often hand-in-hand with the spread of unreliable information. IU studied the possibility
to check the validity of simple statements in an automatic fashion. Our framework
infers their plausibility of such statements on the basis of the proximity (in a given
knowledge graph) of the entities it involves. We found that the complexities of human
fact-checking can be approximately resolved by finding the shortest path between
concept nodes under properly defined semantic proximity metrics on knowledge
graphs. Framed as a network problem, our approach is feasible with efficient
computational techniques. We evaluated this approach by examining thousands of
claims related to history, entertainment, geography, and biographical information using
a public knowledge graph extracted from Wikipedia. Statements independently known
to be true consistently receive higher support via our method than do false ones. See
Sec. 5.6.

7. The LM ATL Team, in collaboration with the IU team focused on: (a) Exploration of
performance of ATL-developed SAX-VSM technology and its ability to detect promoted
topics before their trending phase on Twitter; (b) Improving detection performance of
the method by optimizing the feature selection process; (c) Developing and
implementing a general approach to detect any type of pattern associated with
anomalous information diffusion on Twitter. These include patterns associated to
coordinated effort of promotion and persuasion, as well as grass root conversations.
See Sec. 5.7.

8. The UM Team developed a real-time algorithm that is able to detect emerging
rumors from the stream of social media at a high precision and hours earlier than
existing methods. We developed a user-in-the-loop retrieval system that aim to find all
posts related to a given rumor, which yielded a 20% to 30% improvement over the
state-of-the-art and won the microblog track of the annual TREC competition. We
explored the prediction of the burstiness and popularity of hashtags at various stages of
their life cycle. We identified and tested the effectiveness of seven types of features. See
Sec.5.8.

2. Team members

10: Alessandro Flammini (Team PI), Filippo Menczer (co-PI)
UM: Qiaozhu Mei (co-PI)
LM ATL: Sergey Malinchik (co-PI)

3. Students & Postdocs
* Both supported, partially supported, or involved but not supported
* Info below refers to period of performance Aug. 1st, 2014 to May 31st, 2015

Emilio Ferrara - PostDoc - IU
V.G. Vinod Vydiswaran- Postdoc - UM
Giovanni Ciampaglia - Postdoc - [U



Onur Varol - PhD student - IU

Xioaming Gao - PhD student - [U

Prashant Shiralkar - Phd student - IU

Zhe Zhao - PhD student - UM

Zheyao Yang - PhD student - IU

Jaeyuk Park - PhD student - [U

Vaishnav Kameswaran - Master student - UM
Xiaochen Li - Master student - UM

4. Meetings

* F. Menczer (Co-P], IU), A. Flammini (P], IU), E. Ferrara, S. Malinchik (co-PI, LM ATL)
and Q. Mei (co-PI, UMich) participated to the bi-annual DARPA SMISC-ADAMS meetings
held in Arlington, VA in Oct. 2013 and Apr. 2014

* F.Menczer, A. Flammini, E. Ferrara, and S. Malinchik met for project internal review
at Lockheed Martin offices in Arlington, VA in Apr. 2014

e All teams participated in monthly conference calls for updates and project
coordination.

* F. Menczer and E. Ferrara joined several teleconferences to discuss the design and
delivery of the DARPA SMISC Challenge on the detection of synthetic accounts on
Twitter.

* F. Menczer and E. Ferrara have been participating in the Data working group
teleconference calls

* A. Flammini and E. Ferrara have been participating in the System working group
teleconference calls

e  S. Malinchik have been participating in the Metrics working group

* Q. Mei participated in the Test & Evaluation working group

* Member of the team presented the results of the work presented here in a
consistent number of conferences and workshops. Their list is reported in the
appropriate box of the reporting website

5. Research Activities and Results

5.1 Distributed infrastructure and Data Analysis APl development

In order to store the data set retrieved from the Twitter streaming API and support
various data queries and analysis tasks, the IU Team developed a scalable data
infrastructure. This infrastructure is based on Apache YARN (Hadoop 2) and HBase, and
has been deployed on the “Moe” cluster hosted at Indiana University. The hardware
configuration of the cluster is given in Table 5.1.1.

Fig. 5.1.1 illustrates the architecture of this data infrastructure, featuring the following
advantages:



(1) Fine-grained data access to each social update (tweet) and its associated user
information. This forms the basis for efficient query evaluation and analysis algorithm
execution.

(2) A novel customizable indexing framework [2,7,8] to build the most suitable index
structures for query and analysis purposes. Fig. 5.1.2 gives an example of customized
index structure that cannot be constructed by using existing text indexing systems such
as Lucene.

(3) Efficient parallel data loading and indexing strategies for both static and streaming
data.

(4) Dynamic adoption of different parallel computing frameworks (e.g., Hadoop
MapReduce, iterative MapReduce, Giraph graph processing, etc.) for different query and
post-query analysis tasks. General queries and analysis algorithms can be developed as
building blocks for constructing various analysis workflows.

Our previous research has demonstrated that, based on specially customized index
structures, we can achieve much more efficient data loading, query evaluation and
analysis task solutions compared with using traditional methods. Table 5.1.2 compares
the data loading performance between our solution based on Hadoop MapReduce over
HBase and another implementation based on Riak, a widely adopted commercial NoSQL
database. At its backend, Riak uses distributed Solr, the de facto text indexing
technology in industry. Thanks to the customized index structures, as well as better
data normalization and compression with HBase, we can achieve both smaller loaded
data sizes and a 6 times faster data loading speed than the Riak-based implementation.
Fig. 5.1.3 shows the scalable performance of our parallel stream data loading strategy in
an 8-node testing environment. With 8 distributed loaders, our strategy can load one
day’s data (in the example, 2013-07-13) within less than 4 hours. This means that the
maximum stream data speed that can be handled is 5 times faster than the data rate of
one day’s data.

Fig. 5.1.4 compares the performance of our parallel query evaluation strategy
(IndexedHBase) against two other implementations - one raw data scan solution using
Hadoop MapReduce (Hadoop-FS), and another implementation using the text indexing
and MapReduce mechanisms on Riak, with an example query get-mention-edges
(#euro2012, [2012-06-01, 2012-06-30]). Our solution is 10s to 100s of times faster
than the raw data scan solution, and multiple times faster than using Riak. Fig. 5.1.5
further demonstrates that our post-query analysis algorithms using customized index
structures are also 10s of times faster than raw data scan solutions for two typical
analysis tasks: related hashtag mining and daily meme frequency generation. The
details of our work are reported in few papers [2,7,8] appeared in top information
systems conferences.



At the same time the IU Team has worked on the development of the Truthy API! that
provides a simple interface for accessing our data and statistics using simple scripts. We
currently offer our application-programming interface (API) through Mashape? that
provides modules in various languages (Java, PHP, Python, Ruby, Obj-C), used to access
the API in JSON, CSV, or XML format. The goal of this tool is to provide a user-friendly
framework to analyze social media data accessible to a large public of scholars in
different disciplines.

Node type # of nodes Software role CPU RAM Hard Disk | Network
Head 3 HDFS Name node, 2 * Intel 6-core E 64 240GB SSD, 10Gb
node YARN resource mananger, 5-2620v2 GB 4TB SATA HDD Ethernet

Zoo-keepers, (shared)
HBase master

Compute 10 HDFS data nodes, 2 * Intel 8-core 128GB 240GB SSD, 10Gb

node YARN node managers, E5-2650v2 48TB SATA HDD Ethernet
HBase region servers

Table 5.1.1: Hardware configuration for the Truthy data infrastructure

ding time (hours) |ded total data size (GB) [led original data size |ded index data
(GB) size (GB)
Riak 294.11 3258 2591 667
IndexedHBase 45.47 1167 955 212
Riak / IndexedHBase 6.47 2.79 2.71 3.15

Table 5.1.2: Historical data loading performance comparison for 2012-06 (352GB)

Fig. 5.1.1: Architecture of the Truthy data infrastructure

L http://truthy.indiana.edu/apidoc
2 https://www.mashape.com/truthy/truthy-1#!documentation




Meme Index Table (2012-06)

tweets

“Houro2012”— 12393 13496 ! (tweetids)

Fig. 5.1.2: An example customized index structure

Fig. 5.1.3: Scalable parallel stream data loading performance

Fig. 5.1.4: Query evaluation performance comparison



Fig. 5.1.5: Analysis task performance comparison

5.2 Topical meme clustering and stream clustering

The IU Team has developed a topical meme-clustering framework that works both in
static and in streaming scenarios. The underlying common idea to use specific set of
tweets (proto-memes) instead of single tweets as basic entities to be clustered. A proto-
meme is here defined as a set of tweets carrying a common token of information, such
as a hashtag, a URL or a portion of text. The clear advantage of this approach is that
each tweet, in principle, can exhibit multiple proto-memes and therefore tweets can
carry multiple “concepts” therein. At the same time, the use of protomemes obviates to
the scarcity of text of single tweets that hinder the performance of traditional text-
based clustering strategies.

Details about the definition of protomemes, the problem of static protomeme clustering,
(including the definition of the several protomeme similarity measures we adopted for
clustering purpose), and the performance evaluation (including the measure and the
dataset employed) are discussed at length in ref. [4].

We here discuss in more detail the novelty introduced during the third year of the
DESPIC project to face the problem of real-time clustering in social streams. The model
assumption in data stream clustering is that — due to the large amount of incoming data
- the system cannot store all of it in memory. Additionally, as a data stream evolves
with time, patterns in recent data become more relevant for the clustering algorithm
than those in older data. An established way to de-emphasize older data is to represent
the stream trough a sliding window-based model that at any time T considers only the
last ¢ time steps.

Online K-means is a simple data stream clustering algorithm based on iterative K-means
for stationary data. In general, Online K-means starts with Krandomly chosen initial
cluster seeds and every new point arriving in the stream is assigned to the closest
existing cluster. The closest cluster is chosen based on the distance between the
arriving point and the centroid of the cluster. A cluster centroid is described by the
same set of coordinates as the data points and the specific coordinates of the centroid
are the average of the corresponding coordinates across the data points that are



members of the cluster. This general algorithm can hardly account for new concepts (to
be represented by new centroids) might appear in the stream. These new concepts
should be represented new clusters; assigning their tweets to existing clusters might
jeopardize the quality of clustering. To overcome this problem, one suggested approach
is to check whether the distance from the closest cluster centroid is an outlier in
comparison to the other closest distances that have been observed so far. If not, the new
data point is added to nearest cluster. Otherwise, a new cluster replaces the least
recently updated cluster with the new point as the only member. The least recently
updated cluster is the one to which no new points have been assigned for the longest
time. The outlier detection function uses a history of closest distances from previously
observed data points to determine whether a given distance is an outlier. Every time a
data point arrives in the stream, its distance to the closest centroid is added to the list.
This method assumes that the distances follow a normal distribution. If the new
distance exceeds the historical average by n standard deviations or more, where n is a
parameter, the new point is deemed an outlier. The proposed clustering algorithm, that
we call Protomeme Stream Clustering (PSC), works as follows:

1. At the beginning of each step, the sliding window is advanced by At and
protomemes are extracted from arriving tweets in the stream, i.e. those with
timestamp in (T — At, T]. Each protomeme is treated as a data point to be clustered.
Before these new points are assigned to clusters, all clusters are examined and data
points with time stamps older than T — £At (i.e., those that are no longer in the sliding
window) are removed. From now on, we will refer to these points as old or expired. If a
cluster consists only of old points, it becomes empty and is removed from the list of
clusters.

2. Since we are using protomemes as a pre-aggregation step, in our algorithm we tend
to assign the same protomemes to the same clusters whenever possible. If an arriving
protomeme matches any of the ones present in any of the existing clusters, we assign it
to that cluster and continue to the next protomeme. Otherwise, we move to the next
step.

3. Anew protomeme is assigned to the closest cluster or to a new cluster based on the
outcome of the outlier test. The protomeme is assigned to a new cluster if its distance
from the nearest centroid d > u + no, where y and o are the mean and standard
deviation, respectively, of the values in the historical list of closest distance values. The
historical distance values in the list are kept since the beginning of the clustering
process.

Fig. 5.2.1 plots cumulative LFK-NMI over all the evaluation periods. Each point on the x-
axis represents a six-hour sliding window terminating at the indicated hour. To
compute LFK-NMI correctly for each evaluation period, it is essential to have the same
set of tweets in the ground truth and evaluated clusters. Therefore, we only use tweets
and their labels in the ground truth for the same period of time. As explained earlier,
whenever a cluster becomes empty after removing old data points, we remove it from
the list of clusters. In a real world scenario, we might decide to ignore these clusters
because they have not been updated during the last £ time steps; for evaluation
purposes we keep them in a separate list and account for them when assessing the



quality in the present window, then delete them afterwards. Our algorithm performs
consistently better than the two baselines we considered for comparison. The
performance improvement is more apparent when the online clustering has been
3performed over a sufficiently long period of time. Fig. 5.2.1 shows that after about half
of the running time, PSC provides a consistent improvement in cluster quality with
respect to the baselines. This is due to the characteristic fast-paced churning time of the
topics of discussion in social media. The inset of Fig. 5.2.1 demonstrates that the
differences in LFK-NMI between PSC and the baseline algorithms are statistically
significant. On average PSC outperforms baselines B1 and B23 by 49% and 26%,
respectively.

LFK-NMI is a quantitative measure that captures the overlap between the algorithmic
clusters and the classes in the ground truth. It reports a single-number summary, but it
does not provide any details about the resemblance between clusters and classes in
terms of their numbers and size. For instance, if there is a huge class in the ground truth
along with several small ones, an algorithm can achieve high LFK-NMI by assigning all
the data points to a single cluster. To investigate the performance in greater detail, let
us consider the confusion matrix containing the Jaccard coefficient between the set of
tweets of every cluster in the solution and in the ground truth, respectively. Fig. 5.2.2
shows the confusion matrices for the three algorithms. The rows and columns in these
matrices represent the clusters in the solution and classes in the ground truth,
respectively. The number next to each row (resp., column) shows the number of tweets
in each cluster (resp., class). These matrices are computed at an evaluation period in
which all three algorithms display local maxima in LFK-NMI. Although this period does
not represent the best quality for any of the algorithms, it has the advantage that the
ground truth classes are the same for all three algorithms, which is crucial for
performance comparison.

A good clustering solution will have a confusion matrix with a dark colored cell (high
value of Jaccard Coefficient) in each row or column. The perfect clustering would show

3 Baseline B1: This configuration is an implementation of the Online K-means clustering of simple
tweets along with outlier handling as explained earlier. The only feature used in this algorithm is
text content. The Term Frequency (TF) vector of each tweet is used to compute the content
similarity between tweets and aggregate them. Baseline B2: This configuration is an
implementation of the event detection system recently proposed by Aggarwal and Subbian, which is
a tweet clustering algorithm based on a combination of content and network features. To the best of
our knowledge, this approach represents the current state of the art in streaming clustering of
tweets. [t relies on the full knowledge of the follower network of all users present in the dataset.
Such information provides a very significant advantage, but it also creates a practical challenge in
that it is very time-consuming to obtain, making the algorithm infeasible in real-time, streaming
scenarios. To compute tweet similarity, the original algorithm adopts TF-IDF, but we use TF on our
implementation as it provides better performance on our dataset. This algorithm is also based on
Online K-means and incorporates the same outlier handling procedure. To make use of this
algorithm for comparison, we extracted in batch the follower network of all users present in our
dataset.



only dark cells on the diagonal of a square confusion matrix. As Fig. 5.2.2 illustrates, PSC
does a good job at capturing the actual clusters in the data; we observe greater
confusion in the clusters generated by the two baseline algorithms. In particular, our
method is able to recover 8 clusters whose overlap with the ground truth cluster is
above 60%, while both the baseline methods identify at most 3 clusters faithfully
resembling the ground truth. Although the performance of the clustering methods
fluctuates over time, PSC is able to outperform the state of the art and discover memes
in a streaming scenario with reasonable accuracy.

Fig. 5.2.1: Performance of different clustering algorithms as a function of the evaluation
period. For each algorithm, the LFK-NMI values at each step are averaged across five
runs. These values are then accumulated over the course of the experiment. The inset
plots the time-averaged LFK-NMI, with error bars corresponding to +1 standard error.

Fig. 5.2.2: Overlap (Jaccard coefficient) between ground truth classes and clusters
detected by PSC (left), B2 (middle), and B1 (right).



5.3 Optimal modular structure for information diffusion in social networks

As the main goal of the DESPIC project was to produce a framework to identify
coordinated efforts to spread (mis-) information, we felt it was necessary to study, on a
theoretical ground, the general mechanisms that drive the spread of (mis)information
and rumors. The IU team worked extensively to model diffusion dynamics in networks
with realistic structure.

Following recent findings on the spread of behaviors on social networks,* our group
investigated what is the role of the community structure in presence of social
reinforcement. Social reinforcement provisions that each additional exposure to a piece
of information sensibly increases the probability of its adoption. This makes diffusion
phenomena in social networks behave differently from simple spreading, say e.g,
epidemics. Epidemic spreading is hindered by the presence of communities or modular
structure, since this helps confining the epidemics in the community of origin. We
investigate whether this holds true for information spread with social reinforcement.

We exposed the two, somewhat antagonistic, effects determined by the modular
structure of the social network: enhancement of local spreading and hindrance of global
spreading. Strong communities facilitate social reinforcement and thereby enhance
local spreading; weak community structure makes global spreading easier, because it
provides more bridges among communities. We show that there exists an optimal
balance between these two effects, where community structure counter intuitively
enhances ---rather than hindering--- global diffusion of information.

5.3.1 Methods

We use the linear threshold model ---which incorporates the simplest form of social
reinforcement--- to systematically study how community structure affects global
information diffusion. Consider a set of V' nodes (agents) connected by M undirected
edges. The state of an agent i at time t is described by a binary variable s;(t) = {0,1},
where 1 represents the "active' state and 0 the “inactive' one. At time t=0 a fraction po of
randomly selected agents, or ‘seeds,’ is initialized in the active state. At each time step,
every agent's state is updated synchronously according to the following threshold rule:

st +1) = 1if0k; < Xjenco 50,
5; (t + 1) = 0 otherwise,

where 6 is the threshold parameter, k; is the degree of node i, and N (i) is the set of i’s
neighbors. Note that a node turning active cannot become inactive, and that the
diffusion dynamics is deterministic. The system reaches a steady state when no further
activations are possible.

4Centola, D. The spread of behavior in an online social network experiment.
Science, 2010.



We create an ensemble of networks with modular structure using the block model
approach, assigning half of the nodes to one community and the remainder to a second
one. The interconnectivity within and between communities is tuned by means of a
parameter y. Larger p indicate strong inter-community connectivity, and smaller u the
vice-versa. We initiate the spreading from one community activating a fraction of nodes
and resolve the diffusion equations using two approximation methods: (i) mean field
(MF), and (ii) tree-like (TL) approximations. In the former case, the equation to
compute the smaller stable solution for the fraction of active nodes p4 in community A
is written as:

© k
ph= i+ )Y px Y () @hma—ghEm
k=1 m=0k1

where p{ is the density of the seeds in the community A, and g4 = (1 — w)p4 + upk is
the probability that neighbor of a node is active, which is the sum of: (i) the probability
that the neighbor is in the same community (1 — i) and is active (p4); and, (ii) the
probability that it is in the other B community (u) and is active (pZ).

It is straightforward to write a symmetric equation to compute p2. Finally, p, = (p4 +

p&)/2.

The more sophisticate TL approximation maps the underlying network into a tree of
infinite depth and assumes that nodes at level n are only affected by those at level n-1.
For the details of the solution computed for this approximation refer to [3].

5.3.2 Results

We addressed the issue of how communities affect information diffusion. As u
decreases nodes in A have increasingly more neighbors in A. Thus, the number of seed
nodes to which nodes in A are exposed also increases because the seeds exist only in A.
In other words, strong communities enhance local spreading. By contrast, the
spreading in community B is triggered entirely by the nodes in A. Therefore, larger u
(smaller modularity) helps the spreading of the contagion to community B. The fact that
large modularity (smaller p) facilitates the spreading in the originating community, but
small modularity (larger u) helps inter-community spreading, raises the following
question: is there an optimal modularity that facilitates both intra- and inter-
community spreading?

Our work suggests a positive answer to the question raised above. Fig. 5.3.2.1
demonstrates that there is indeed a range of values of u that enables both. In the blue
range ( local"), strong cohesion allows intra-community spreading in the originating
community A; in the red range (global'), weak modular structure allows inter-
community spreading from A to B. The interval in which blue and red overlap (purple,
“optimal'') provides the right amount of modularity to enable global diffusion.



Fig. 5.3.2.2 summarizes our results, derived analytically by MF and TL approximations,
and by numerical simulations. We compute the mean of p,, across 1,000 runs of the
model, each assuming a different realization of the network and of the seed nodes. We
fix the threshold (6 = 0.4) throughout all simulations. Fig. 5.3.2.2(a) shows the phase
diagram with three phases: no diffusion (white), local diffusion (blue), and global

diffusion (red).

These results, published in the prestigious Physical Review Letters [3], have been
selected as “Editors’ Suggestion”, an honor awarded only to one article per issue.
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Fig. 5.3.2.1: The tradeoff between intra- and inter-community spreading. Stronger
communities (small i) facilitate spreading within the originating community (local)
while weak communities (large u) provide bridges that allow spreading between
communities (global). There is a range of i values that allow both (optimal). The blue
squares represents p4, the final density of active nodes in the community A, and the red
circles represents pZ. The parameters for the simulation are: p, = 0.17,0 = 0.4, N =
131,056 and z = 20.



Fig. 5.3.2.2: (a) the phase diagram of threshold model in the presence of community
structures with N = 131,056 and z=20, and 8 = 0.4. There are three phases: no
diffusion (white), local diffusion that saturates the community A (blue), and global
diffusion (red). The dotted and dashed lines indicate the values of p, shown in (b) and
(c). (b) the cross-sections of the phase diagram (dotted lines in (a)). TL (solid lines)
shows excellent agreements with the simulation while MF (dotted lines) overestimate
the possibility of global diffusion. (c) the cross-sections represented in dashed lines in

().

5.4 Evolution of online user behavior, roles and influence

During the three years of the DESPIC project the IU Team started focusing on the role
played by single users in spreading information and how they influence each other. The
ultimate goal is that of understanding the mechanisms behind successful persuasion
campaigns. We conducted several case study to learn what features are revealing of the
influence process and of the users’ role.

5.4.1 Evolution of online user behavior

We conducted a case study focused on the protests that occurred in Turkey in 2013 (the
so called Gezi Park and Taksim Square upheavals) and the relative social media
discussions.



We collected a dataset of tweets isolating 32 hashtags of general interest for the protest,
including 10 among those adopted by the protesters and 10 among those adopted by
government supporters. We expanded this list by extracting the 100 hashtags that
occurred more frequently with those in the seed list. We finally gathered (from the
Twitter Gardenhose - a 10% sample of the entire social media stream) all the tweets
containing at least one hashtag in the extended list. This procedure yielded a dataset of
2.3 million tweets produced during the 25 days of the protest between May and June
2013.

The details of our analysis are reported in [6]: our work was presented at the
prestigious ACM Web Science 2014 Conference and was praised with the conference
Best Paper Award.

The most relevant findings of our study are summarized here: (i) we presented a
method to extract topically focused conversation on the Gezi Park protest; (ii) we
explored the spatio-temporal characteristics of such conversation, in particular we
studied where tweets originated and where they were consumed. This allowed us
identifying clusters of cities that are mostly consistent with the country geopolitics; (iii)
we analyzed the emerging characteristics of the users involved in this conversation,
including their roles and their influence, and showed how these evolved as the events of
the protest unfolded, highlighting a redistribution of influence that made the discussion
more democratic and less centered around some key actors; (iv) we showed how online
user behavior is affected by external events and how users respond to political leaders’
speeches with the emergence of a spontaneous synchronization process.

We first explored the spatial dimension of the conversation, focusing on the discussion
inside the Turkish borders. In Fig. 5.4.1.1 we show the trend similarity matrix computed
among the sets of trending hashtags and phrases occurring in each of the 12 cities
where Twitter trends are monitored.

The clusters found on the base of the similarity matrix matches well-known fact relative
to the Turkish geopolitical profile. Eskisehir, Kayseri and Gaziantep (in the red cluster)
are all central Anatolian cities where the president's party (AKP) has a stronghold
(though the CHP opposition party edged out the AKP in the March 2014 mayoral race);
they are more culturally conservative and homogeneous. [zmir, Istanbul, Bursa, Ankara,
and Adana (green cluster) are the largest cities in Turkey with diverse populations.
Finally, Antalya and Mersin (blue cluster) are seacoast cities that are known for
supporting either one of the main opposition parties (CHP or MHP).

We then explored the temporal dimension of the Gezi Park discussion. The aim was to
determine whether the activity on social media mirrored on-the-ground events, and
whether bursts of online attention coincided with real-world protest actions. We
analyzed the time series of the volume of tweets, retweets and replies occurring during
the 27-day-long observation window, as reported in Fig. 5.4.1.2 (top panel). The
discussion was driven by bursts of attention that largely corresponded to major on-the-
ground events, similar to what has been observed during other social protests. The
numbers of tweets and retweets are comparable throughout the entire duration of the



conversation, suggesting a balance between content production (writing novel posts)
and consumption (reading and rebroadcasting posts via retweets). In the middle panel
of Fig. 5.4.1.2 we report the number of users involved in the conversation at a given
time, and the cumulative number of distinct users (dashed red line). Similarly, in the
bottom panel, we show the total number of hashtags related to Gezi Park, and the
cumulative number of distinct hashtags. Approximately 60% of all users observed
during the entire discussion joined in the very first few days, whereas additional
hashtags emerged at a more regular pace throughout a longer period. This suggests that
the conversation acquired traction immediately, and exploded when the first on-the-
ground events and police action occurred.

Our second experiment aims at investigating what roles users played in the Gezi Park
conversation and how they exercised their influence on others. We also seek to
understand whether such roles changed over time, and, if so, to what extent such
transformation reshaped the conversation. Fig. 5.4.1.3(a) shows the distribution of
social ties reporting the two modalities of user connectivity, namely followers
(incoming) and followees (outgoing) relations. The dark cells along the diagonal
indicate that most users have a balanced ratio of ingoing and outgoing ties. Users below
the diagonal follow more than they are followed. Note that most users are allowed to
follow at most 1000 people. Finally, above the diagonal, we observe users with many
followers. Note the presence of extremely popular users with hundreds of thousands or
even millions of followers. The number of followers has a broad distribution and seems
largely independent of the number of followees. The presence of highly followed users
in this conversation raises the question of whether their content is highly influential.
We determined user roles as a function of their social connectivity and interactions.
Fig. 5.4.1.3(b) gives an aggregated picture of the distribution of user roles during the
Gezi Park conversation. The y-axis shows the ratio between number of followees and
followers of a given user; the x-axis shows the ratio between the numbers of retweets
produced by a user and the number of times other users retweet that user. In other
words, the vertical dimension represents social connectivity, whereas the horizontal
dimension accounts for information diffusion. We can draw a vertical line to separate
influential users on the left (those whose content is most often retweeted by others)
and information consumers on the right (those who mostly retweet other people's
content). Influential users can be further divided in two classes: those with more
followers than followees (bottom-left) and those with fewer followers (top-left), which
we call hidden influentials. Similarly, information consumers can be divided in two
groups--rebroadcasters with a large audience (bottom-right), and common users (top-
right). Fig. 5.4.1.3(b) shows a static picture of aggregated data over the 27-day
observation period.

To study how roles evolve as events unfold, we carried out a longitudinal analysis
whose results are shown in Fig. 5.4.1.4. This figure shows the average displacement of
each role class, and the number of individuals in each class (circles), for each day. The
displacement is computed in the role space (that is, the space defined by the two
dimensions of Fig. 5.4.1.3(b)). Larger displacements suggest that individuals in a class,
on average, are moving toward other roles.



Various insights emerge from Fig. 5.4.1.4: first, we observed that the classes of
information producers (influentials and hidden influentials) are relatively stable over
time; together they include more than 50% of users every day, suggesting that a
consistent number of individuals had large audiences, and the content they produced
was heavily rebroadcasted (by information consumers as well as other influentials). On
the other hand, information consumers show strong fluctuation: starting from an initial
configuration with stable roles (May 29--31), common users and rebroadcasters
subsequently exhibit large aggregate displacements in the role space (June 1--4). We
also note a redistribution of the users in each role: at the beginning of the protest a
large fraction represents common users and rebroadcasters, while, as time passed and
events unfolded, these two classes shrank. This suggests that common users and
rebroadcasters acquired visibility and influence over time: some fraction of these users
moved from the role of information consumers to that of influentials, such that their
content was consumed and rebroadcasted by others. In other words, the discussion
became more democratic over time, in that the control of information production was
redistributed to a larger population, and individuals acquired influence as the protests
unfolded.

Fig. 5.4.1.1: (left) Trend similarity matrix for 12 cities in Turkey. From the dendrogram
on top we can isolate three distinct clusters. (right) Location of the cities with trend
information, labeled by the three clusters induced by trend similarity.



Fig 5.4.1.2: Hourly volume of tweets, retweets and replies between May 30th and June
20th, 2013 (top). The timeline is annotated with events from Table 1 of ref. [6]. User
(center) and hashtag (bottom) hourly and cumulative volume of tweets over time.

Fig. 5.4.1.3: (left) Distribution of friends and followers of users involved in the Gezi
Park conversation; (right) Distribution of user roles as function of social ties and
interactions.



Fig. 5.4.1.4: Average displacement of roles over time for the four different classes of
roles. The size of the circles represents the number of individuals in each role.

5.4.2 Grassroot meme formation and evolution analysis

The IU Team has investigated how grassroot memes form and evolve over-time.
Studying a specific meme about the social movement known as “Occupy Wall Street”
since its inception and for the duration of one year, we sought to understand: (1) how
the geographic patterns of this communication network differ from those of stable
political communication [9]; (2) how Twitter users taking part to the protest took up
different online behaviors, language usage and activity modes, and (3) how online
protest groups were formed and how they evolved.

We found that, compared to a network of stable domestic political communication, the
Occupy Wall Street grassroot meme exhibits higher levels of locality and a hub and
spoke structure, in which the majority of non-local attention is allocated to high-profile
locations such as New York, California, and Washington D.C. This signal might be of
extreme importance to determine a signature of a genuine grassroot movement,
encoding the importance of the geographic dimension in the characterization of memes’
nature.

Moreover, we observed that information flowing across state boundaries is more likely
to contain framing language and references to the media, while communication among
individuals in the same state is more likely to reference protest action and specific
places and times, as reported by the Figure 5.4.2.1 below. This uniquely characterizes
the signature of a grassroot meme yielding to a differentiation of the content diffused
and language adopted on the geographical network according to different scopes.



Interstate Intrastate

Token Ratio Token Ratio
wall .590 city 2.254
nyc .600 tonight 1.737
street 699 march 1.669
news 718 join 1.494
99% 756 solidarity 1.387
bank 763 day 1.354
don’t .782 square 1.333
media .837 please 1.243
peaceful .845 park 1.220
nypd .847 now 1.179

. s P(Token|Intrastate) - - -
Ratio’, defined as PiToken Intersiarey” 1S small when a token is more common in

intrastate traffic and large when a token is more common in interstate traffic.
Terms relating to rallying supporters are more predominant in intrastate
communication, while interstate traffic tends to favor terms such as protest
slogans and references to the media.

Fig. 5.4.2.1: Geographical differences in language usage in a grassroot meme (#ows).

We finally examined the temporal evolution of digital communication activity relating
to the protest observing the changes in users’ engagement, interests, and social
connectivity. The results of this analysis indicated that, on Twitter, the movement
tended to elicit participation from a set of highly interconnected users with pre-existing
interests in domestic politics and foreign social movements (see Figure 5.4.2.2). These
users, while highly vocal in the months immediately following the birth of the
movement, appeared to have lost interest in protest over the remainder of the study
period. Our findings related to topical group formation and evolutions in a grassroot
meme are instrumental to understanding what components play an important role in
the characterization of natural campaigns vs. an artificial one.

In-Group Connectivity Among Occupy Users

0.40

—Group

0.35+

ity In

Tweet Type
retweets
0.30-

1 b 1 —— mentions
0.25- SEREES:

I byt !
}}}%}}}}%¥} It IEREE S b {{}}}}}}}}{}

0.20~

Proportion of Activ

I I I I I I I I I I I I I I I I
06/11 07/11 0811 09/11 1011 1111 12/11 0112 0212 03/12 04/12 0512 06/12 0712 0812  09/12
Date

Fig. 5.4.2.2: Group formation and connectivity evolution for the users involved in
the #ows conversation.



We further investigated the birth and growth of natural trends, exploiting the above-
mentioned dataset built for the artificial vs. natural trend classification problem, trying to
generalize our findings to encompass all observed trends. In particular we focused on
understanding the role played by geography in shaping the communication patterns
describing these naturally trending memes.

Focusing once again on United States trends, looking for universal dynamics to describe
the spread of grassroot trending memes, we found that two very different classes of
dynamics exist: (1) trend-setting, and (2) trend-following ones. lLe., certain cities that
correspond to the largest traffic hubs of the country play the role of trend-setters,
producing a significantly larger fraction of trends that will later be followed by other
states; on the other hand, most of the other cities act as trend-followers, mostly receiving
the trends from the trend-setters and rebroadcasting them rather than producing new
trends.

These two clearly separate dynamics are shown in the Figure 5.4.2.3 below.

Fig 5.4.2.3. Trendsetters vs. trend-followers: the inset shows a Gaussian Mixture Model
showing two different trendsetting dynamics; the contours represent the std. dev. of each
Gaussian distribution. The main plot shows their linear regressions.

Although not originally included in our proposal, we decided to explore the possibility to
classify users behavior to increase our arsenal of tools to detect the variety of (non-)
malicious behaviors underlying the diffusion of information in online social media. The
motivating hypothesis beyond this choice is that knowing who are the users participating
a conversations (knowing, for example, what are their historical interests, political
affiliations, friends, posting habits) provides information about the nature of the
conversation that cannot be found in the topological and textual features of the same users
when observed in isolation.



While collecting users’ history is within our capabilities (modulo technical impediments
related to data size and their streaming nature), what is direly needed is a framework that
can summarize users’ behavior in a number of meaningful classes.

As a case study we attempted the classification of users according to their behavior in
establishing friendship relationship on an online social media [21, 30]. We used
proprietary data provided by colleagues at Yahoo! Research in Barcelona that describes
the full and detailed history of users’ link creation and message sending/repost in Yahoo!
Meme (a platform similar to Twitter, now discontinued, used mostly for sharing images).

We identified a number of simultaneous potential strategies a generic user may adopt to
create new links (e.g., to follow the friend of a friend, or follow the user originating
messages that the link creator often reposts - and therefore finds interesting). Each user
is then represented with a vector of probabilities that describes how often the user draws
her linking choices from the corresponding strategy. These probabilities are then
estimated assuming that the observed history of the entire network maximizes the
likelihood of what is observed among all possible values of the individual strategy
probabilities. Each user is finally described by the relative frequency with which she uses
the basis strategies. Users are then clustered according to their probability vector in
groups with similar behavior.

From this study it emerges that a successful classification is possible. Five different well-
distinct classes emerge that greatly differ not only in the dimensions we chose a-priori to
describe them, but in several others, including their permanence on the platform, the
frequency of their posts, how much they are followed and reposted, and more. The
differences between the different groups across a number of these dimensions are
illustrated in Figure 5.4.2.4. Notice for example the group we named information seekers
(pink). Their linking behavior is driven by the trial to reach directly the source of
information of interests rather then expanding their friendship circle and aligning their
interest on it. Although they are a minority (3%) they produce more information, and even
more importantly they act as spreaders of the information they collect widely across the
network rather then just in the restricted circle of their friends.

The analytical framework we developed for this study is relatively simple and general
enough to be extended to a number of behaviors beyond how online follower/followee
relations are established. Of course its reliability rests on the careful choices of the
probability vectors that describe the users and what they represent. Those will need to be
chosen by careful consideration depending on the specific user feature being analyzed.



The results of this study were presented at the prestigious KDD 2013 conference, held in
Chicago in September 2013.

Fig. 5.4.2.4: Features describing different classes of users. Each box shows data within
lower and upper quartile; whiskers represent 99th percentile; the triangle and the line in a
box represent median and mean, respectively.

5.5 Social bot detection

Persuasion campaigns are often accompanied by an intense usage of social bots. Another
milestone achieved by the IU Team is the design, development and delivery of an
automatic framework for detection and classification of human and synthetic activity on
social media.

5.5.1 Bot or not?

Our team worked on a machine-learning framework to extract features that characterize
human-like and bot-like behavior, exploiting various dimensions of account activities. Our
system exploits over one thousands features derived from user meta-data, content and
sentiment produced and consumed, timing information, network structure and
information diffusion patterns. For each feature the system builds a set of descriptive
statistics that include mean, moments, and the entropy of the distribution.

Features are divided in the following classes: (i) Network features capture various
dimensions of information diffusion patterns. We build networks based on retweets,



mentions, and hashtag co-occurrence, and extract their statistical features. Examples
include degree distribution, clustering coefficient, and centrality measures. (ii) User
features are based on Twitter meta-data related to an account, including language,
geographic locations, and account creation time. (iii) Friend features include descriptive
statistics relative to an account's social contacts (followees), such as the median, moments,
and entropy of the distributions of their number of followers, followees, posts, and so on.
(iv) Timing features capture temporal patterns of content generation (tweets) and
consumption (retweets); examples include the signal similarity to a Poisson process, the
average time between two consecutive posts, and such. (v) Content features, are based on
linguistic cues computed through natural language processing, especially part-of-speech
tagging; examples include the frequency of verbs, nouns, and adverbs in the phrases
produced by the account. (vi) Sentiment features are built using general-purpose and
Twitter-specific sentiment analysis algorithms, including happiness, arousal-dominance-
valence, and emotion scores.

When our framework analyzes an account, it creates a “profile” extracting all these
features, and then it runs the profile through a set of classifiers that include decision trees,
ensemble methods (random forest), boosting methods (AdaBoost) and linear models
(Logistic Regression). The models can classify the profile using all features combined or
using disaggregated feature classes, considering only one set of features from the same
class at the time.

To classify an account as either social bot or human, the models must be trained with
instances of both classes. Finding and labeling many examples of bots is challenging. As a
proof of concept, we used a list of social bots compiled by Lee et al.> We used the Twitter
Search API to collect up to 200 of their most recent tweets and up to 100 of the most
recent tweets mentioning them. This procedure yielded a dataset of 15 thousand
manually verified social bot accounts and over 2.6 million tweets. Lee's list also contains
legitimate (human) accounts. The same procedure resulted in a dataset of
counterexamples with 16 thousand people and over 3 million tweets. We used this
dataset to train the social bot detection model and benchmark its performance.

“Bot or Not?” achieves very promising detection performance, with a ROC-AUC score of
95% (see Fig. 5.5.1.1). Some feature classes, like the user meta-data, appear more
revealing and they can be easily explained (see Fig. 5.5.1.2). Note that such performance
evaluation is based on Lee’s dataset from 2011; we are already aware of more recent
social bots that cannot be reliably detected. Bots are continuously changing and evolving.
Further work is needed to identify newer annotated instances of social bots at scale. The
DARPA SMISC Synthetic Account Detection Challenge will represent an optimal testbed for
our framework to measure it’s detection performance with a third-party benchmark.

To make the detection system broadly accessible, we developed a Web-based application
that interfaces with the Twitter API and retrieves the most recent activity of any account,

5 Lee, K. et al. Seven months with the devils: a long-term study of content polluters on
Twitter. ICWSM 2011



to make a determination of whether that account exhibits bot-like or human-like behavior.
The Web interface, depicted in Fig. 5.5.1.3, allows one to inspect any active Twitter
account. Data about that account and its contacts are collected and processed in real time.
The classifier trained on all feature classes provides a likelihood score that the accountis a
social bot. The system also presents disaggregate scores according to models trained on
each feature class independently. Often, an account may be classified as a social bot
according to some feature classes, but not according to others. This is due to the large
heterogeneity of features exhibited by people ---some may have bot-like features, for
example their meta-data or friend information. In addition to the classification results,
“Bot or Not?” provides a variety of visualizations that capture some insights about the
features exploited by the system. Examples are displayed in Fig. 5.5.1.3. We invite the
reader to explore these interactive visualizations directly at
http://truthy.indiana.edu/botornot

In summary, our research line on social bot detection led us to define and develop a new
machine-learning framework to classify Twitter accounts as human-like or bot-like
according to features describing their behavior, network characteristics, content and
sentiment, and temporal patters, along with user meta-data. We also delivered as a proof-
of-concept “Bot or Not?,” a freely-accessible Web platform for social bot detection on
Twitter. Our results are described in details in ref. [5] and are in revision under the
prestigious journal Communications of the ACM.

Fig. 5.5.1.1: Classification performance of “Bot or Not?” for four different classifiers. The
classification accuracy is computed by 10-fold cross validation and measured by the area
under the receiver operating characteristic curve (AUROC). The best score, obtained by
Random Forest, is 95%.



Fig. 5.5.1.2: Subset of user features that best discriminate social bots from humans. Bots
retweet more than humans and have longer user names, while they produce fewer tweets,
replies and mentions, and they are retweeted less than humans. Bot accounts also tend to
be more recent.



Fig. 5.5.1.3: Visualizations provided by “Bot or Not?.” (A) Part-of-speech tag proportions.
(B) Language distribution of contacts. (C) Network of co-occurring hashtags. (D) Emotion,
happiness and arousal-dominance-valence sentiment scores. (E) Temporal patterns of
content consumption and production

5.5.2 SMISC Bot Detection Challenge

The main goal of the DARPA Bot Detection Challenge was to evaluate our capability to
detect social media persuasion campaigns that are run by autonomous software, a.k.a.
social bots. To this end, the Data Working Group of the DARPA SMISC program designed a
realistic task that required participants to identify social bot accounts targeting anti-
vaccine activists on Twitter. A “replay” of one month of data from the Twitter stream was
provided to all challenge participants. The Indiana University team (including
collaborators at the University of Michigan) designed a system to track, store and process
the streaming data in real-time, while creating and updating the profiles of the accounts
involved in the conversation, along with their corresponding features.

The IU approach consists of three steps:

1. Extraction of user-based features;

2.  Filtering the search space based on various heuristics; and

3. Visualization and interactive data exploration for domain expert inspection.



Feature extraction

The IU system builds a dynamic profile for each user participating in the conversation, for
rapid data access, analysis, and classification. The system also generates feature vectors
describing user profiles, updated every 6 hours, for classification purposes. It employes a
subset of features developed for the ‘Bot Or Not" framework
(truthy.indiana.edu/botornot). The features can be summarized in five classes: user
metadata, content, sentiment, network, and temporal features, as reported in
Table 5.5.2.1. These features were carefully selected to reflect hand-crafted rules designed
to identify suspicious activity. Examples of such rules include: (i) low entropy of topics of
interest of the account, to identify thematically-focused users; (ii) anomalous levels of
retweets or mentions, to capture users attempting to attract attention; (iii) anomalous
connectivity patterns, to detect suspicious cliques; (iv) coordinated attempts to address
specific human users, to identify orchestrated targeting; (v) suspicious growth-rate in
followers, following, or content production levels; (vi) suspicious temporal patterns, as
opposed of natural human circadian activity; (vii) high-volume of near-duplicate content;
(viii) high-degree of sentiment polarization; and (ix) interactions focused on users in the
target population, as opposed to external users.

As the stream of data was “replayed,” the IU system periodically re-computed the user
feature vectors. The pairwise cosine similarity between the feature vectors highlights the
most similar pairs of users. Once the IU team started to identify bots in the conversation,
matching the users most similar to the detected bots allowed for timely detection of new
bots. In Fig. 5.5.2.1 we show the distribution of the pairwise cosine similarity between
pairs of feature vectors characterizing bots, as opposed to bot-human pairs. The similarity
between bots tends to be higher than between bots and humans. The bot-bot similarity
exhibits a bimodal distribution that reflects the presence of two types of bots designed by
two red teams: bots designed by same team are more similar to each other.

Heuristics

In the earlier stage of the competition, the IU team developed various heuristic techniques
to narrow the search space. Specifically, three strategies worked well: (i) analysis of the
hashtag co-occurrence network; (ii) duplicate-image search; and (iii) dynamic tracking of
network growth.

Hashtag co-occurrence network

Starting from a provided list of vaccine-related hashtags, the IU team collected all tweets
appearing in the competition stream that contained at least one of those hashtags. The
system constructed a hashtag co-occurrence network, where each node represents a
unique hashtag and edges between two nodes are weighted by the number of times these
two hashtag are observed together in a tweet (see Fig. 5.5.2.2).

Using the hashtag co-occurrence networks, the IU team was able to identify other
campaign-related hashtags to enrich the list of competition-relevant keywords. These
were later used to separate users into categories of pro- and anti-vaccine. The proportion
of tweets users posted containing any of these hashtags resulted in a strongly predictive
feature.



Image search

A common approach to create realistic bot profiles is to impersonate other users by
cloning information such as descriptions, names, and profile pictures. The IU team built an
algorithm to detect duplicate user pictures using an online image search service. Seven out
of 39 bots were detected using this heuristics. These bots used images from the Wikipedia
domain as their profile pictures.

Network growth

In the competition dataset, a friendship network snapshot was provided every week. The
IU team studied the topological changes of these temporal networks and identified users
that created suspicious levels of connections with anti-vaccine activists.

Visualization

Information visualization is a crucial part of the IU team’s decision system. Expert
knowledge is still required to conclude that a particular user is a social bot while limiting
the number of false positives. The IU team developed a web application similar to the
Twitter platform to create and populate user profile information and timelines in real time
(see Fig. 5.5.2.3). This interface includes charts to monitor temporal changes in user
metadata, such as the number of followers, friends, and posts.

Learning Framework

The IU bot detection system relies on a strong machine-learning component, including
several classifiers trained using previous bot datasets. We leveraged a training set from
the Infolab at Texas A&M University, which consists of 15k verified social bot accounts and
16k legitimate users. The best features, a subset of those used in the ‘Bot Or Not’ system,
are reported in Table 5.5.2.1. These features yielded a cross-validation classification
accuracy of AUROC = 93% (Area Under Receiver Operating Characteristic curve). When
applied to the challenge data, the classifiers identified several bots with high confidence,
but unfortunately the majority of these were not challenge-related bots; they were not
targeting anti-vaccine activists.

The lack of information about the actual number of bots in the challenge was one of the
major challenges for the IU team. The target user set comprised more than 7000 users
observed within the first two weeks of competition, only 39 of which (0.56%) were
labeled as actual bots. We identified all of the bots, yielding no misses (zero false negative
rate). However, we expected a higher number of bots. This brought the IU team to
speculate, during the early weeks of the challenge, that a third class of bots remained
undetected. We tried to balance exploration and exploitation seeking to reveal different
classes of bots, yielding seven false hits (a false positive rate of 0.1%). A posteriori, a more
conservative strategy would have produced fewer false alarms and better accuracy.



Fig. 5.5.2.1: Distribution of cosine similarity between pairs of accounts.

Fig. 5.5.2.2: Hashtag co-occurrence networks.



Fig. 5.5.2.3: Visualization and interactive data inspection interface.

User
metadata
Content
Sentiment

Network

Temporal

Feature description
# of posts/retweets/replies/mentions, min. # of status, # of
friends/followers, GPS coordinate availability

raw counts and fractions of pro- and anti-vaccine related content,
hashtag/mention/url entropy

(a) happiness, (b) ANEW, (c) OpinionFinder, and (d) emoticon scores
for each tweet and retweet

retweet and mention network avg. clustering, core number, in-, out-
degree centralities

Signal-to-Noise ratio of user meta-data changes over time, max-min of
these values and entropy of daily activity patterns

Table 5.5.2.1: Classes of features to describe users profiles.




5.6 Computational fact-checking from knowledge bases

Coordinated efforts to spread information are especially a concern when less than
transparent methods of promotion are adopted, when obscure or hidden interests lie
behind the effort, and, of course, when the information being spread is unreliable. Online
communication platforms, in particular social media, have created a situation in which the
proverbial lie “can travel the world before the truth can get its boots on.” Misinformation,
astroturf, spam, and outright fraud have become widespread.

However, under certain conditions, reliable knowledge transmission can take place online.
For example, Wikipedia, the crowd-sourced online encyclopedia, has been shown to be
nearly as reliable as traditional encyclopedias, even though it covers many more topics.
This motivated our attempt at leveraging any collection of factual human knowledge, such
as Wikipedia, for automatic fact checking.

5.6.1 Introduction

We focused on the simplest kind of factual statements that can be verified: let a statement
of fact be represented by a subject-predicate-object triple, e.g., (“Socrates,” “is a,”
“person”). A set of such triples can be combined to produce a knowledge graph (KG),
where nodes denote entities (i.e., subjects or objects of statements), and edges denote

predicates connecting the subject and object of a statement.

In a KG distinct paths between the same subject and object typically provide different
factual support for the statement those nodes represent, even if the paths contain the
same number of intermediate nodes. For example, paths that contain generic entities, such
as “United States” or “Male,” provide weaker support because these nodes link to many
entities and thus yield little specific information. Conversely, paths comprised of very
specific entities, such as “positronic flux capacitor” or “terminal deoxynucleotidyl
transferase,” provide stronger support. A fundamental insight that underpins our
approach is that the definition of path length used for fact checking should account for
such information-theoretic considerations.

To test our method [29] we use the DBpedia database (http://dbpedia.org) which consists
of all factual statements extracted from Wikipedia’s “infoboxes”. From this data we build
the large-scale Wikipedia Knowledge Graph (WKG), with 3 million entity nodes linked by
approximately 23 million edges, see Fig. 5.6.1.1(a). These provide the most factual and
uncontroversial information of Wikipedia.



Fig. 5.6.1.1: Using Wikipedia to fact-check statements. (a) To populate the knowledge
graph with facts we use structured information contained in the ‘info-boxes’ of Wikipedia
articles (in the figure, the info-box of the article about Barack Obama). (b) In the diagram
we plot the shortest path returned by our method for the statement “Barack Obama is a
Muslim.” The path traverses high-degree nodes representing generic entities, such as
Canada, and is assigned a low truth-value.

5.6.2 Methods

Let the WKG be an undirected graph G = (V, E) where Vis a set of concept nodes and E is a
set of predicate edges. Two nodes v,w € V are said to be adjacent if there is an edge
between them (v, w) € E. They are said to be connected if there a sequence of n = 2 nodes
V = V1,V ..vp = W, such that, for i =1,..,n -1 the nodes v; and v;.+1 are adjacent. The
transitive closure of G is G* = (V,E™) where the set of edges is closed under adjacency, that
is, two nodes are adjacent in G* iff they are connected in G via at least one path. This
standard notion of closure has been extended to weighted graphs, allowing adjacency to
be generalized by measures of path length [Simas and Rocha (2014)], such as the semantic
proximity for the WKG we introduce next.

The truth value t(e) € [0,1] of a new statement e = (s, p,0) is derived from a transitive
closure of the WKG. More specifically, the truth value is obtained via a path evaluation
function: t(e) = max W(Ps,,). This function maps the set of possible paths connecting s and
o to a truth value 7. A path has the form Ps, = viv;...vs, where v; is an entity node, (vi, vi+1)



is an edge, n is the path length measured by the number of its constituent nodes, vi = s,
and v, = 0. Various characteristics of a path can be taken as evidence in support of the
truth value of e. Here we use the generality of the entities along a path as a measure of its
length, which is in turn aggregated to define a semantic proximity:

W(Ps,0) = W(vi...va) = [1 + X i=2n1l0og k(vi)] -1,

where k(v) is the degree of entity v, i.e,, the number of WKG statements in which it
participates; it therefore measures the generality of an entity. If e is already present in the
WKG (i.e., there is an edge between s and o), it should obviously be assigned maximum
truth. In fact W = 1 when n = 2 because there are no intermediate nodes. Otherwise an
indirect path of length n > 2 may be found via other nodes. The truth value 7(e) maximizes
the semantic proximity defined by Eq. 1, which is equivalent to finding the shortest path
between s and o, or the one that provides the maximum information content in the WKG.
The transitive closure of weighted graphs equivalent to finding the shortest paths between
every pair of nodes is also known as the metric closure. This approach is also related to the
Path Ranking Algorithm®, except that here we use the shortest path (equivalent to
maximum probability) rather than combining a sample of bounded-length paths in a
learning framework.

5.6.3 Validation

We test our fact-checking method on tasks of increasing difficulty, and begin by
considering simple factual statements in four subject areas related to entertainment,
history, and geography. We evaluate statements of the form “d; directed m;,” “p; was
married to s;,” and “c; is the capital of r;,” where d; is a director, m; is a movie, p; is a US
president, s; is the spouse of a US president, ¢; is a city, and r; is a country or US state. By
considering all combinations of subjects and objects in these classes, we obtain matrices of
statements. Many of them, such as “Rome is the capital of India,” are false. Others, such as
“Rome is the capital of Italy,” are true. To prevent the task from being trivially easy, we
remove any edges that represent true statements in our test set from the graph. Fig.
5.6.3.1 shows the matrices obtained by running the fact checker on the factual statements.
Let e and €' be a true and false statement, respectively, from any of the four subject areas.
To show that our fact checker is able to correctly discriminate between true and false
statements with high accuracy, we estimate the probability that 7(e) > t(e'). To do so we
plot the ROC curve of the classifier since the area under the ROC curve is equivalent to this
probability. With this method we estimate that, in the four subject areas, true statements
are assigned higher truth-values than false ones with probability 95%, 98%, 61%, and
95%, respectively.

These findings represent a first step toward scalable computational fact-checking methods
that may one day mitigate the spread of harmful misinformation. Further work is needed
before present methods could be reliably applied in the wild.

6 Lao, Ni, Tom Mitchell, and William W. Cohen. 2011. “Random Walk Inference and Learning in
a Large Scale Knowledge Base.” In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 529-539. EMNLP *11. Stroudsburg, PA, USA: Association for
Computational Linguistics.



Fig. 5.6.3.1: Automatic truth assessments for simple factual statements. In each confusion
matrix, rows represent subjects and columns represent objects. The diagonals represent true
statements. Higher truth-values are mapped to colors of increasing intensity. (a) Films winning
the Oscar for Best Movie and their directors, grouped by decade of award. (b) US presidents
and their spouses, denoted by initials. (c¢) US states and their capitals, grouped by US Census
Bureau-designated regions. (d) World countries and their capitals, grouped by continent.

5.7 Detection and classification of persuasion campaigns on Twitter

The major focus of ATL project was to study temporal behavior of information cascades by
tracking the feature vectors representing information diffusion. We generate multi-
dimensional time series or cascade trajectory describing individual cascade evolution.

We think that cascade trajectories can represent different classes of conversation patterns



that occur in online social media. We assume that a cascade signature matching process
similar to anomaly detection can detect orchestrated deception campaigns.

5.7.1 Multi-dimensional time series analysis with SAX-VSM technology

In the design of our framework we had to take into account three important factors: (i)
Multi-dimensional time series raw data can grow in size easily over gigabytes; this aspect
explicitly affects the scalability of the algorithms. (ii) In addition to the problem of large
volume of data, most classic machine learning algorithms do not work well on time series
raw data due to their unique structure; in our scenario, time series have a very high
dimensionality, high feature correlation, and a large amount of noise, which present a
difficult challenge in time series data mining tasks. (iii) As a result, many time series
algorithms instead of operating on the original “raw” data, better operate on higher-level
representation of such data.

We proposed a novel method for temporal data analysis and classification, called SAX-
VSM, which is based on two existing techniques namely, SAX (Symbolic Aggregate
approXimation) and VSM (Vector Space Model). The SAX-VSM algorithm demonstrates a
high accuracy performance, learns efficiently from a small training set, and has a low
computational complexity.

SAX: Symbolic Aggregate ApproXimation

The basic idea of Symbolic Aggregate Approximation, SAX is to convert the data into a
discrete format, with a small alphabet size. To convert a time series into symbols, first the
time series is normalized, and then two steps of discretization are performed. In details, a
time series is initially transformed using Piecewise Aggregate Approximation (PAA). This
method simply approximates a time series by dividing it into equal-length segments and
recording the mean value of the data points that fall within each segment.

Next, to convert the PAA values to symbols, user determines the breakpoints that divide
the distribution space into a equiprobable regions, where « is the alphabet size specified
by the user. The PAA coefficients can then be easily mapped to the symbols corresponding
to the regions in which they reside.

Figure 5.7.1.1 shows an example of a time series being converted to string “baabccbc”.
Note that the general shape of the time series is still preserved, in spite of the massive
amount of dimensionality reduction.
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Fig. 5.7.1.1: A visualization of the SAX dimensionality reduction technique.

A time series (red line) is discretized first by a PAA procedure (N = 8) and then, using
breakpoints of arbitrary length, it is mapped into the word “baabccbc” using an
alphabet size of 3.

Vector Space Model, VSM

The second component of SAX-VSM technique is known in Information Retrieval a
Vector Space Model, VSM. In order to build SAX words vocabularies of long time series
we use a sliding window technique to convert a time series into the set of SAX words.
By sliding a window across time series, extracting subsequences, converting them to
SAX words, and placing these words into an unordered collection, we obtain the “Bag of
Words” representation of the original time series. Each row of the constructed matrix
(Bag of Words) represents a SAX word and corresponding frequency of that word
generated by sliding window procedure (see Fig. 5.7.1.2). Following the common
Information Retrieval workflow, we employ the TF*IDF weighting scheme for each
element of this matrix in order to transform a frequency value into the weight
coefficient.

Figure 5.7.1.2: By sliding a window across time series, extracting subsequences,
converting them to SAX words, and placing these words into an unordered collection,
we obtain the bag of words representation of the original time series. Next, TF*IDF
statistics is computed resulting in a single weight vector.



SAX-VSM classification procedure

Similar to other classification techniques, SAX-VSM consists of two parts - the training
phase and the classification procedure. An overview of the SAX-VSM algorithm is shown
in Figure 5.6.3. In the training phase, all labeled time series from N training classes are
transformed into symbolic representation, and the algorithm generates N TF*IDF
weight vectors representing N training classes (see Fig. 5.7.1.3).

In the classification phase, an unlabeled time series is converted into a term frequency
vector and assigned to the class whose TF*IDF weight vector has a maximal cosine
similarity.

Figure 5.7.1.3: An overview of SAX-VSM algorithm: at first, all labeled time series from
each class are converted into a single bag of words using SAX; secondly, TF*IDF
statistics is computed resulting in a single weight vector per training class. For
classification, an unlabeled time series is converted into a term frequency vector and
assigned a label of a weight vector, which yields a maximal cosine similarity value.

SAX-VSM characteristics: accuracy, performance and tolerance to noisy data

We used well-known synthetic CBF test in order to investigate and compare the
performance of SAX-VSM and 1NN Euclidean classifier on increasingly large datasets
(See Fig. 5.7.1.4). Detailed analysis of SAX-VSM performance and comparison with other
temporal data classification techniques is described in detail in our original paper.
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Figure 5.7.1.4: SAX-VSM algorithm characteristics: (a) - Comparison of classification
precision and run time of SAX-VSM (red) and 1NN Euclidean classifier (blue) on CBF
data. SAX-VSM performs significantly better with limited amount of training samples.
(b) - While SAX-VSM is faster in time series classification, its performance is comparable
to 1NN Euclidean classifier when training time is accounted for. (c) -SAX-VSM
increasingly outperforms 1NN Euclidean classifier with the growth of a noise level.

The unique characteristics of SAX-VSM, such as high classification accuracy, learning
efficiency and a low computational complexity suggested using SAX-VSM for the goal of
current research.

Extending SAX-VSM for n-dimensional case

The described SAX-VSM algorithm can be extended easily to n-dimensional case. Each
dimension of multi-dimensional time series (trajectory) can be processed
independently in terms of calculating corresponding Bags-of-Words and TF*IDF weight
vectors for each dimension. To compare two trajectories, A and B, cosine similarities
along each dimension can be calculated in the same way as it was done in one-
dimensional case and then total similarity of trajectories can be estimated by combining
similarities along all directions:

n

zsim(A, B)?

sim(A,B) =\ .

5.7.2 SAX-VSM for Twitter data classification

In collaboration with the IU team, we focused on two classes of information diffusion on
Twitter: advertisement campaigns defined as promoted content on Twitter as opposed
to non-promoted trending topics. This choice allows generating large-scale data that do
not require human efforts for labeling.

Experiments and classification results

The dataset consisted of 76 promoted and 853 non-promoted trends. 224 features
selected among network features, event-interval features and user characteristics
characterized each time series.



In our classification tests we used a Leave-One-Out Cross-Validation (LOOCV) approach:
we systematically applied our multi-dimensional version of SAX-VSM classifier for each
example using the rest of the sample for training.

Initially the feature selection procedure was organized in the following way: we
pipelined a Monte Carlo random search of feature combinations and LOOCV test. To
reduce the search in potentially very large combinatorial space, we ranked individually
all 224 features by their classification ability and then limited the search space by using
only the 60 top features. We achieved good results in classification quality, keeping only
12 features and randomly testing possible combinations of 12 from the top 60 available
features. The best features found this way are arranged according to their descending
ranks and shown in Table 5.7.2.1. Together they produce classification accuracy of 97%.

hashtagN_degree_skewness Skewness of degree distribution (hashtag network)
hashtagN_CC_min Min. clustering coeff. (hashtag network)
Frequency Volume of tweets
mentionN_LCC_mean_shortest_path Mean shortest-path (LCC) of the mention network
retweetN_density Density of the retweet network
event_interval_mean Mean of distribution of tweets time intervals
hashtagN_degree_entropy Entropy of degree distribution (hashtag network)
event_retweet_interval_kurtosis Kurtosis of distribution of retweets time intervals
user_favourites_count_min Min. of distribution of favorite tweets
event_mention_interval_entropy Entropy of distribution of mentions time intervals
event_mention_interval_std Std. dev. of distribution of mentions time intervals
event_interval_skewness Skewness of distribution of tweets time intervals

Table 5.7.2.1: Set of features giving best classification results

To evaluate the performance of binary classifying systems like our SAX-VSM procedure,
it is a common practice to calculate a Receiver Operating Characteristic (ROC), or ROC
curve. By plotting the true positive rate vs. the false positive rate at various threshold
settings and measuring the area under the ROC curve (AUC), we get another evaluation
of classifier accuracy. In Figure 5.7.2.1, the plot of the ROC is shown for the case of 12
features included in Table 5.7.2.1.



Figure 5.7.2.1: ROC curve for the classification experiment

5.7.3 Improving feature selection

We implemented and experimented with a classical Forward Selection (FS) algorithm
and slightly modified Restricted Forward Selection (RFS). We chose True Positive Rate
as the utility function. Our experiments demonstrated that both algorithms, FS and RFS,
yield very good results. Below is the result obtained by using the FS algorithm and
optimization performed at the trending phase. The optimization included all network
and event features with our usual parameter set: PAA = 4, alphabet =5, SAX window =
70.
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Figure 5.7.3.1. Improving detection accuracy during the feature selection process.

Top 10 features

mentionN_degree_mean
retweetN_degree_std
hashtagN_CC_max




retweetN_CC_kurtosis
mentionN_nodes
hashtagN_edges
hashtagN_CC_mean
event_retweet_interval_entropy
mentionN_out-degree_std
event_interval mean

Table 5.7.3.1: The 10 best features obtained by running a feature selection process,
FS, described above. The features are arranged according to their descending ranks.

5.7.4 Conclusions

ATL demonstrated that without any content analysis of topics on Twitter™, by
monitoring only temporal traces of topological characteristics of users’ networks
with twitting temporal activity, it is possible to distinguish two types of topics on
Twitter™, promoted or advertisement campaigns and non-promoted or naturally
trending topics. We presented experimental results of applying our SAX-VSM
classification technique of multidimensional time series to achieve high detection
accuracy on Twitter™ data. Our results suggest that social streams can be monitored
effectively almost in a real time and some abnormal activity can be detected by
analyzing temporal evolution of social networks.

5.8 Predicting bursts and rumors in social media

5.8.1 Introduction

Co-PI Dr. Qiaozhu Mei, his graduate student assistants, and a postdoctoral researcher
have been conducting research supported by this project. Our goal in this project is
to detect social media rumors early and to understand their diffusion patterns.
Rumors, which are intentionally used in many persuasion campaigns, can be
extremely harmful. Especially in social media, a single tweet containing a false rumor
has the potential of deceiving millions of people and hurting businesses in minutes.
For instance, a Tweet posted by an hacked Twitter account of the Associated Press
(AP) on April 23rd, 2013, which was about an alleged bombing in the White House,
made the stock market take an instant nosedive. A steep recovery followed when the
hacking became apparent. These changes between the spread and the correction of
the rumor took just 15 minutes. Similar incidents could potentially have a huge
tangible impact.

Rumors usually contain a piece of controversial and factual statement on topics of
general interest. A social context for rumors to spread widely is when people have
unmet information needs related to the topic. We worked at identifying
conversations expressing an information need [25]. Specifically, we built a classifier
that identified Tweets containing specific information needs, i.e., Tweets that are real



questions, with 85% accuracy. We conducted a longitudinal comparative analysis of
these questions and the overall Twitter corpus. We showed that questions users ask
on Twitter can be used as a signal to detect rumors (controversial factual
statements). We observed that the uncertainty about the veracity of a rumor triggers
questions from common Twitter users. On being exposed to an unverified rumor,
many people immediately seek additional information to verify the truth-value of the
rumor. Based on this observation, we developed an efficient algorithm to detect
emerging rumors as early as possible, and certainly before they enjoy a peak in
popularity. At the base of our method is the developed framework to filter Tweets
containing enquiries [15]. The results showed that our framework could detect
rumors from raw Tweet stream at a high precision, and several hours before they
have been clarified or corrected by either authoritative sources or the crowd.

The online rumor detector is the first step to identify potential rumors and prevent
the harmful ones from spreading. Once a candidate rumor is detected, the next task is
to gather more information about the rumor, possibly by retrieving every Tweet
spreading or correcting it. In this way, the domain experts can investigate the
candidate rumor, evaluate its spreading behavior, and decide on its truth-value. We
developed a retrieval system that can retrieve all other Tweets relevant to the
detected rumors with limited use of human judgments [12]. We also built a
visualization tool for domain experts to analyze how a rumor spreads based on the
analysis of the audience of the rumor and its corrections [16].

In the rest of this section, we will summarize particular components of our work. We
begin with analyzing the user’s information-seeking behavior, followed by the
discussion of the early rumor detection algorithm. We then present a user-in-the-
loop, high precision and high recall retrieval system to detect individual Tweets
discussing a specific rumor. We will also present a tool that helps people visualize
and evaluate the spread of rumors. Finally, we briefly discuss our approach to
detecting influence bots in the SMISC challenge, which we participated in with our
collaborators at Indiana University.

5.8.2 Detection and Analysis of Questions on Twitter

Being exposed to a rumor, many people immediately seek additional information to
verify the truth-value of the rumor. In other words, the uncertainty about the
veracity of a rumor drives people to ask questions. By studying users’ information
seeking behavior, mainly questions, we may find important signals to identify
controversial persuasion campaigns in their early stages.

Conventional studies of online information seeking behavior usually focused on the
use of search engines or question answering (Q&A) websites. In this study, we
proposed to extract and analyze questions from billions of online conversations
collected via Twitter, which was published at the international World Wide Web
conference in 2013 [25]. We trained a text classifier to detect information-seeking
questions on Twitter, which achieved an accuracy of 86.6%. We did a comprehensive
analysis of the types of questions we extracted. We found that the questions being
asked on Twitter were substantially different from the topics tweeted in general.
Information needs detected on Twitter had a considerable power of predicting the
trends of Google queries. We also conducted a longitudinal analysis of the volume,



spikes, and entropy of questions on Twitter to study the impact of real world events
and user behavioral patterns on social platforms.

Figure 5.8.2.1: Longitudinal analysis showing examples of tweets with information
need [25].

Figure 5.8.2.1 above shows an example of an entropy analysis on the questions being
asked on Twitter. It plots the entropy of the language models of all information
needs, and of all tweets in the general discussion over time. We mark several points
in the time series each of which presents a sudden entropy drop the next day, which
indicates a concentration of the topics being discussed/asked. We extracted the
keywords that are significantly overrepresented on the day after each marked point,
which gave us a basic idea about the topics that triggered the concentration. These
topics typically corresponds to surprising events occurred at that time, including
rumors.

5.8.3 Early Detection of Rumors in Social Media

Our analysis of the information seeking behavior, as described above, showed that
rumors triggers questions asked by Twitter users and therefore can be potentially
detected by tracking these questions. Indeed, we observed that many users who
were exposed to a rumor would seek more information about a rumor before
deciding whether to believe it, spread it, or debunk it. Some of these enquiries
happened over Twitter. Based on this observation, we designed a rumor detection
framework that can efficiently detect rumors at a very early stage of their lifecycle.
Potential rumor statements were identified based on the kind of enquiries they
generated. For example, Table 5.8.3.1 shows some enquiry tweets that were sent out
within 60 seconds of the tweet from the hacked Twitter account of the Associated
Press in April 2013 about two explosions in the White House.

Oh my god is this real? RT @AP: Breaking: Two Explosions in the White
House and Barack Obama is injured.

[s this true? Or hacked account? RT @AP Breaking: Two Explosions in




the White House and Barack Obama is injured.

[s this real or hacked? RT @AP: Breaking: Two Explosions in the White
House and Barack Obama is injured.

How does this happen? #hackers RT @user: RT @AP: Breaking: Two
Explosions in the White House and Barack Obama is injured.

[s this legit? RT @AP Breaking: Two Explosions in the White House and
Barack Obama is injured.

Table 5.8.3.1: Examples of enquiry tweets about the rumor of explosions in the
White House

The framework of our rumor detection algorithm is shown in Figure 5.8.3.1. We first
identify signal tweets using a set of regular expressions, e.g., “is this true?”, “what?”,
“this is not true”, etc. in order to select only those Tweets that contain skeptical
enquiries: i.e. verification questions and corrections. Then, we cluster the signal
tweets based on overlapping content in the Tweets and analyze the content of each
cluster to determine a single summary statement for the cluster. We then capture all
non-signal Tweets that match any of the cluster summary statements to identify
candidate rumor clusters. Finally, we rank the candidate rumor clusters by the
likelihood that their statements are rumors using statistical features independent of
the statements’ content.

To evaluate our approach to detect rumors, we conducted experiments over two
Twitter collections. One was focused on the Boston marathon bombing, a major
newsworthy event in April 2013. The other was the “background” collection
consisting of a random sample of Tweets from a month with no significant
newsworthy event. We first compared our method against two baseline methods: (a)
detecting bursting events, and (b) tracking trending social memes. The results over
the Boston bombing collection showed that more than half of the statements outputs
by our approach were rumors, while the two baseline methods obtained a much
lower accuracy. We also compared our approach with another method that tracks
correction patterns, such as presence of keywords like “rumor”, “debunk”, etc. Our
approach returned more rumors with a comparative accuracy. We also

showed that our approach could detect rumors about three hours earlier than any of



the baseline methods.

Figure 5.8.3.1: The procedure of real-time rumor detection (Figure 1 in Zhao et al.

[15])-

The experiments on the background collection showed that our approach effectively
and efficiently detected rumors. With a 72-core Hadoop cluster, in about half an hour
we were able to monitor and process 10% of all the tweets posted in one day on
Twitter. Out of 50-candidate statements output by the approach, about one third
were real rumors, and about 70% of the ten top ranked candidates were real rumors.
For further details, please refer to our paper [15], which was published at the
international World Wide Web conference in 2015. Figure 5.8.3.2 shows the lifespan
of rumors we detected in the Boston bombing collection.

5.8.4 Rumor Retrieval and Visualization

Next, we aim to extract meaningful signals for detecting rumors and other types of
persuasion campaigns, and to analyze and model the diffusions of the rumors and the
corresponding corrections. To do these, we needed to identify all Tweets relevant to
the rumors we detected, including those using different words and expressions but
conveying the same rumor.

Figure 5.8.2.2: Detect and track rumors rom Boston marathon explosion (Figure 5 in
Zhao et al. [15]).

To address this, we proposed a novel framework of retrieval techniques that is
particularly useful for maximizing the recall of relevant results without
compromising the precision. It could be used to effectively retrieve relevant Tweets
given a rumor statement. This new framework features a ReQ-ReC (ReQuery-
ReClassify) process, a double-loop retrieval system that combines iterative
expansion of a query set with iterative refinements of a classifier. The flowchart of
this framework is shown in Figure 5.8.4.1.



Figure 5.8.3.1: ReQ-ReC framework (Figure 1 in Li et al. [12]).

This new framework permits a separation of labor: the query generator’s task is to
enhance the recall while the classifier's one is to maximize the precision on the
results retrieved by any of the queries. The overall process alternates between the
query expansion cycle (the outer loop to increase recall) and the classifier
refinement cycle (the inner loop to increase precision). The separation of the two
roles allows the query enhancement process to be more aggressive in exploring new
query suggestions. Our results are published at the ACM SIGIR Conference on
Research and development in information retrieval in 2014.

We evaluated the framework on four large datasets provided by the TREC. Our
experiments show that the separation of roles significantly outperforms other
relevance feedback methods that rely on a single ranking function to balance
precision and recall. On average, the new framework yields a 20% to 30%
improvement of recall-oriented retrieval performance (measured by R-precision or
mean average precision) on very large microblog data sets. Additional details can be
found in (Li et al, [12]). The initial versions of the framework were used to
participate in the microblog track of the TREC 2013 and achieved the top rankings
among more than 70 submissions from 20 participating teams [16].

We also developed a tool to analyze and visualize the diffusion of rumors [27]. The
basic idea is to partition the audience of a rumor and its corrections into several
states and model their transition between states. The RumorLens tool consists of two
stages: a pre-computation stage and a visualization stage. The first stage takes a
dataset of Tweets that have been tagged as propagating or correcting a rumor, as
well as the social network of the propagating users, and calculates the marginal
impact of each tweet. The second stage helps visualize the result of the first stage.
The tool could be used to better understand the diffusion of rumors and find other
interesting and meaningful facts about them. Our results have been presented at the
international conference of weblog and social media in 2015.



5.8.5 Influence detection prediction strategy: Multi-arm bandit

We also participated in the SMISC influence detection challenge as a team in
collaboration with the Indiana University. Two specific aspects of the challenge
motivated us to adopt an online prediction strategy to detect bots. First, the data was
progressively released to the participating teams, and not made available all at once.
Second, during the live challenge, once a guess was submitted, the participating
teams received immediate feedback on the correctness of that guess. Such a setting
closely fits an online prediction scenario, where the learner observes a data stream
and tries to make increasingly accurate guesses based on receiving feedback on its
guesses and updating its internal belief.

We adopted the multi-arm bandit paradigm as our online prediction strategy. We
initialized the “arms” with a set of binary independent classifiers, and used a variant
of the hedge algorithm?” as the meta-learning strategy which decided which arm to
pull next. Specifically, each binary classifier based its prediction on different aspects
of the user profile in such a way that when combined, the classifiers could
complement each other in detecting different variants of bots.

Each user account got a prediction score between [0,1] assigned by each arm. A
higher score indicates that the classifier assigns higher likelihood for the user
account to be a bot. The meta-learner, which executed the variant of the hedge
algorithm, initially assigned uniform weights to each arm, and then used a
multiplicative scheme to update the arm weights. After each round, the meta-learner
produced a final “bot score” for each user account as the weighted average of
prediction scores output by each arm. Finally, it selected the account with the highest
bot score as the next guess. On receiving the feedback score x (which could be
positive or negative), the weight of all classifiers were multiplied by a factor of
e’ (x.fj), where f; is classifier j’s prediction score for the guessed account. This way, a
classifier (“arm”) would gradually gain weight if it accurately detected bots with high
confidence, and gradually lose weight if it mislabeled normal accounts as bots with
high confidence. Learning from our predictions in the SMISC challenge, we intend to
continue working to tune our strategy to detect other persuasion campaigns.

5.8.6 Summary

Persuasion campaigns, especially the ones on controversial topics, usually use false
rumors to achieve their objectives. Our work in this project aims to detect, retrieve
and understand social media rumors. With our achievements, domain experts ahead
of those rumors’ outbursts and unpredictable consequences can take actions and
decisions.

After analyzing user’s information seeking behaviors, we discovered a set of signals
that appear mostly at the early stage of rumors. We then take raw tweet stream as
input, monitor signal Tweets, group them, and output potential rumor clusters. Next,
by applying our ReQ-ReC retrieval system, we managed to retrieve relevant Tweets

7 Yoav Freund and Robert E. Schapire, “A decision-theoretic generalization of
online learning and an application to boosting,” Journal of Computer and System
Sciences 1997;55(1):119-139.



about the detected rumor with a high precision and a high recall. At last, besides the
rumor statement and its tweets, domain experts will also see a highly descriptive
visualization of its diffusion.
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